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We study the lateral deformations of randomly folded elastoplastic and predominantly plastic thin sheets
under the uniaxial and radial compressions. We found that the lateral deformations of cylinders folded from
elastoplastic sheets of paper obey a power law behavior with the universal Poisson’s index �=0.17�0.01,
which does not depend neither the paper kind and sheet sizes �thickness, edge length� nor the folding confine-
ment ratio. In contrast to this, the lateral deformations of randomly folded predominantly plastic aluminum
foils display the linear dependence on the axial compression with the universal Poisson’s ratio �e

=0.33�0.01. This difference is consistent with the difference in fractal topology of randomly folded elasto-
plastic and predominantly plastic sheets, which is found to belong to different universality classes. The general
form of constitutive stress-deformation relations for randomly folded elastoplastic sheets is suggested.
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I. INTRODUCTION

Randomly crumpled thin matter, such as polymerized
membranes, biological cells, and thin sheets, is of notewor-
thy importance for many branches of science and
technology.1 These materials exhibit three distinct phases:
the flat, the tubular, and the crumpled �folded�.2 In the past
decade, randomly folded materials become a subject of great
interest because of their fascinating topological and mechani-
cal properties.3–8 The last are governed by the topology of
crumpled configuration.8,9 Specifically, the diameter of ran-
domly folded membrane �sheet� is found to scales with the
hydrostatic folding force F as R�F−�,8 where the folding
force exponent � is universal and equal to �=3 /8 for phan-
tom and �=1 /4 for self-avoiding membranes with a finite
bending rigidity.8 Further, it was found that the statistical
topology of randomly folded elastoplastic and predominantly
plastic materials are characterized by different sets of univer-
sal scaling exponents.6

One of the most intriguing mechanical phenomena is that
an almost all deformed materials exhibit dimensional
changes in lateral directions without corresponding
stresses.10 This phenomenon, known as Poisson’s effect,10,11

may be treated as a particular expression of the Le Chat-
elier’s principle, which states that when a system at equilib-
rium is subject to a change, the system will respond to re-
lieve the effect of that change.12 Indeed, under the
equilibrium conditions, the lateral deformations lead to de-
crease the volume change produced by the applied strains.
Specifically, in an axially loaded specimen, Poisson’s effect
is commonly characterized by the ratio of lateral strain �� to
axial strain ��, known as Poisson’s ratio,

�e = − ��/�� , �1�

which is one of the fundamental physical properties of any
natural or engineering material.10 In the case of radial com-
pression, the theory of isotropic elasticity predict that

�H = −
2�e

1 − �e
�R, �2�

where �R and �H are the radial and axial strains,
respectively.13

Although the Le Chatelier’s principle implies a positive
values of �e, such that the Poisson’s strains lead to decrease
in the relative volume change, a negative Poisson’s ratio
�that is, a lateral extension in response to stretching� is not
forbidden by thermodynamics.11 In the limit of infinitesi-
mally small strains, the theory of isotropic elasticity allows
Poisson’s ratios in the range from −1 to 0.5 for three-
dimensional materials and from −1 to 1 for two-dimensional
structures.13 Materials with �e=0 do not exhibit changes in
lateral directions. For most isotropic materials, Poisson’s ra-
tio is positive, being close to 0.15 for most ceramics, around
of 0.3 for most metals and about of 0.5 for rubbery
materials.10 Generally, the values of Poisson’s index and ra-
tio are dependent on the material structure, chemical compo-
sition, and porosity.14,15 However, some classes of materials
are characterized by Poisson’s ratio or index determined by
the material topology. Specifically, Poisson’s ratio �index� of
elastic fractals is determined by their fractal dimension.16–18

Materials which expand transversely when stretched longitu-
dinally are called auxetic.19 The auxetic effect is usually
brought about by an in-folding �reentrant� or rotating struc-
ture at either the macroscopic or microscopic level.20 Ex-
amples of auxetic materials in which a negative Poisson ratio
is accounted to their �micro�structure include reentrant
foams, crumbled polymerized membranes, fiber networks
near the percolation threshold, among others �see Refs.
21–26�.

In this way, the auxetic nature of Poisson’s effect in the
stretching of randomly crumbled paper was demonstrated in
Ref. 27 More generally, it was shown that the flat phase of
fixed-connectivity membranes provide a wide class of aux-
etic materials with the universal negative Poisson’s ratio �
�−1 /3, where the symbol � denotes the numerical
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equality.1,26 However, Poisson’s effect in the crumpled
�folded� phase still remains ununderstood. Accordingly, in
this work, we studied Poisson’s effect in randomly folded
elastoplastic and predominantly plastic thin sheets subjected
to the axial and radial compressions.28

II. EXPERIMENTS AND DISCUSSION

To study Poisson’s effect in randomly folded matter in
this work, we used five papers of different thicknesses �h
=0.024, 0.030, 0.039, 0.068, and 0.087 mm� and bending
rigidity, early used in Ref. 6 to study the statistical topology
of folded configurations. Square paper sheets with the edge
size L of 250, and 500 mm were folded in hands into ap-
proximately spherical balls. Then, we confined these balls in
cylindrical cells of different diameters to an approximately
cylindrical form with the height approximately equal to the
diameter. It should be pointed out that once the folding force
is withdrawn, the sizes of folded sheet increase logarithmi-
cally with time during approximately 1 week due to the
strain relaxation �see, for details, Ref. 6�. Accordingly, to
obtain the cylinders of different dimensions from the sheets
of the same size, the folded cylinders were kept in cells
under hydrostatic compressions during different times �from
5 min to 48 h� and then relaxed �during 7 days� until no
changes in the ball dimensions were observed. Then, the av-
eraged diameter R0 and height H0 of each cylinder were de-
termined from 15 random measurements. Thus, we obtained
the cylinders with H0�R0 folded from sheets of the same
size L with different contraction ratios K=L /R0, such that
max K�L� /min K�L��2. In total, 350 folded cylinders were
tested under axial compression and 50 under radial compres-
sion.

Further, we performed some experiments with randomly
folded aluminum foils of thickness 0.02 mm with edge sizes
of 200 and 500 mm, the deformations of which are predomi-
nantly plastic.6 Ten sheets of each size were folded in hands
into approximately spherical balls with averaged diameter
R0=L /K for different contraction ratios.

A. Experiment details

First of all, folded sheets were tested under uniaxial com-
pression in a universal testing machine �see Figs. 1�a� and
1�b��. The perimeter P����=2	R of deformed cylinder �ball�
was measured at different compression ratios �� =H /H0 with
the help of silk strings. It should be pointed out that Pois-
son’s ratio is strictly defined only for a small strain linear
elastic behavior and it is generally highly strain dependent at
larger deformations,29 and even may change the sign.30 Ac-
cordingly, in the case of large deformations, the relative lat-
eral expansion/contraction ���=R /R0= P / P0� is commonly
described by Poisson’s function of axial compression/
stretching ��� =H /H0�, where H0, R0, and P0 and H, R, and P
are the specimen height, diameter, and perimeter before and
after the deformation, respectively. The form of Poisson’s
function ��= f����� is material dependent31 and generally, it
cannot be characterized by a single parameter, such as Pois-
son’s ratio. However, for some materials, Poisson’s function
obeys a power law scaling behavior,16,32

�� = ��
−�, �3�

with the strain independent scaling exponent �, called Pois-
son’s index, which coincides with Poisson’s ratio �e only in

the limit of infinitesimally small strains, �ii=���i
2−1��1.

The scaling behavior �Eq. �3�� implies that the mass den-
sity 
�V−1 of axially deformed material exhibits a fractallike
behavior, 
���

2�−1. So, the scaling behavior �Eq. �3�� is ex-
pected for soft materials with statistically self-similar
structures.16,17,32 Early, Gomes et al.32 have reported that the
lateral deformations of randomly folded aluminum foils obey
the scaling relation �Eq. �3�� with different � for balls folded
from foils of different thicknesses. So, in this work we used
the scaling relation �Eq. �3�� to determine Poisson’s index.

It should be pointed out that the deformations of folded
sheets are essentially irreversible due to the plastic deforma-
tions of sheet in the crumpling creases �see Figs. 2�a� and
2�b� and Refs. 4–7�. Moreover, at a fixed compression ratio
��, the compression stress slowly decreases in time during
more than 24 h �see Fig. 2�c� �Ref. 33��. Generally, the lat-

FIG. 1. Experimental setups for tests of ��a� and �b�� uniaxial
and �c� radial compressions of ��a� and �c�� randomly folded paper
and �b� aluminium foil.
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eral deformations of viscoelastic materials are also expected
to change in time, and so, Poisson’s index �ratio� is expected
to be time dependent �see Ref. 34�. Accordingly, to detect a
possible time dependence of Poison’s expansion, in the first
five experiments performed in this work, the perimeter of
deformed cylinder was measured several times for 24 h for
each fixed ��. However, no time dependence in the lateral
expansion was noted �see Fig. 2�d� �Ref. 35��.

Additionally, 50 randomly folded paper sheets36 were
tested under radial compression in the piston ring compres-
sor �see Fig. 1�b��. In this case, the axial extension ratio �H
=H /H0 was measured as a function of radial compression
ratio �R=R /R0. Notice that for large deformations, the form
of dependence �H=F��R� depends on the form of constitu-
tive equations.

B. Poisson’s expansion of randomly folded sheets under
uniaxial compression

In Fig. 3�a�, the averaged perimeters of axialy deformed
cylinders folded with different contraction ratios K=L /R0
�H0�R0� are plotted versus their heights H=��H0. One can
see that, at least in the range of 0.2��� �1, the perimeter
scales with H as P�H−� with the same scaling exponent

� = 0.17 � 0.01 �4�

for all folded sheets tested. Accordingly, Fig. 3�b� shows the
data collapse in coordinates �� versus �� for 350 folded pa-
pers sheets tested in this work under uniaxial compression.

These data suggest that Poisson’s index of randomly folded
paper does not depend nether on the environmental condi-
tions �temperature and air humidity37�, which were varied in
a wide range during 6 months of experiments, nor on the
paper thickness, sheet size, and contraction ratio. This find-
ing, together with the universality of local fractal dimension
Dl=2.64�0.05,6 suggests the existence of universality class
of crumpled phase of randomly folded elastoplastic sheets.

FIG. 2. �a� Typical force �F�-compression ���� curve of ran-
domly folded paper under the uniaxial compression: �1� loading, �2�
unloading, and �3� relaxation shown in �d�. �b� Typical stress
�megapascals�–strain �arbitrary units� behavior of randomly folded
aluminium foil under uniaxial compression: �1� loading and �2� un-
loading. �c� Compression force F �newtons� versus time t �hours�
for fixed compression ratios �� =0.5. �d� Lateral expansion ratio ��

versus time t �hours� for fixed compression ratios �� = �1� 0.8, �2�
0.5, and �3� 0.3.

FIG. 3. �a� Perimeter P �millimeters� versus height H=��H0 for
axially compressed cylinders folded from sheets of paper of thick-
ness h=0.039 mm and size L=500 mm with different contraction
ratios K= �1� 3.9, �2� 5.6, and �3� 8.3. �b� Lateral expansion ratio ��

versus axial compression ratio �� for all folded paper sheets tested
under uniaxial compression; open symbols correspond to cylinders
folded from sheets of size 250 mm and full symbols to cylinders
folded from sheets of size 500 mm from papers of thickness: ��1�
and �2�� 0.024, ��3� and �4�� 0.030, ��5� and �6�� 0.039, ��7� and �8��
0.068, and ��9� and �10�� 0.087 mm with different contraction ra-
tios; solid line—data fitting with the scaling relations �Eq. �2�� with
�=0.17 �insert shows the same graph plotted in log-log coordi-
nates�. �d� Axial expansion ratio �H versus radial compression ratio
�R for radially compressed cylinders folded from sheets of paper of
size L=500 mm and thickness of ��1� and �2�� 0.024 and ��3� and
�4�� 0.068 mm with contraction ratios �1� and �3� and �2� and �4�;
symbols—experimental data and solid line—data fitting by the scal-
ing relations �Eq. �4�� with �=0.2.
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At the same time, we noted that the universal value �Eq.
�4�� differs from values of Poisson’s index �=0.26�0.02
and �=0.27�0.04, reported in Ref. 32 for randomly folded
aluminum foils with thicknesses of 0.007 and 0.037 mm, re-
spectively. So, in this work, we performed 20 experiments
with randomly folded aluminum foils with thicknesses of
0.02 mm with edge sizes of 200 and 500 mm. Surprisingly,
we noted that while the lateral deformations of randomly
folded foils can be fitted by the power-law relation �Eq. �4��
with �=0.25�0.04 �see Fig. 4�a��, close to the values re-
ported in Ref. 32, the experimental data can be better fitted
by the linear relationship �Eq. �1�� with constant Poisson’s
ratio,

�e = 0.33 � 0.01, �5�

which is found to be independent on the foil size and the
folding contraction ratio within a wide range of �� �see Figs.
4�a� and 4�b��. The linear relation between lateral and longi-
tudinal strains is quite surprising taking into account that the
stress-strain relation is strongly nonlinear for �� �0.5 �see
Fig. 2�b��.

This difference in Poisson’s effect, together with the dif-
ference in the fractal dimension of randomly folded elasto-
plastic and predominantly plastic sheets �see Ref. 6�, sug-
gests that the randomly folded plastic foils and elastoplastic
sheets belong to different universality classes.

C. Radial compression test and general form for constitutive
stress-deformation relationship of randomly folded

sheets in one- and two-dimensional stress states

In tests with radial compression, we found that the axial
extension of randomly folded paper scales with the radial
compression as

�H = �R
−2�, �6�

where the scaling exponent

� = 0.20 � 0.03 �7�

is found to be the same for all tested sheets �see Fig. 3�c��.
So, at least numerically,

� �
�

1 − �
, �8�

where �=0.17�0.02 is the universal Poisson’s index �Eq.
�4�� found in axial compression tests.

The scaling relations �Eqs. �3� and �6�� together with the
equality �Eq. �8�� imply that the constitutive stress-
deformation relationship of randomly folded sheets should
have the following general form:

�i
−1 = f�
i� + �� j�k��, �9�

where f�
i� is an increasing function of the principal stress

i, such that f�0�=0 and � is defined by relationship;5 in-
dexes i� j�k take values of 1, 2, and 3, corresponding to
the direction of principal stress �see Ref. 13�.

III. CONCLUSIONS

We found that Poisson’s expansion of randomly folded
elastoplastic sheets under axial and radial compression dis-
plays a power-law scaling behavior with the universal scal-
ing exponent �Eq. �4��, whereas the lateral strains of ran-
domly folded aluminum foils depend linearly on the
longitudinal strains within a surprisingly wide range of
strains. Poisson’s ratio of randomly folded aluminum foils is
also universal, i.e., independent on the foil thickness, sheet
size, and folding contraction ratio. So, our findings suggest
that randomly folded elastoplastic and predominantly plastic
sheets belong to different universality classes.

It should be pointed out that the universality of Poisson’s
index and ratio is very surprising, taking into account that
Poisson’s ratio of common porous materials �metals, ceram-
ics, polymers, and soils� strongly depends on the porosity �p�
or relative mass density �
 /
0= �1− p��,15 which in the case

FIG. 4. �a� Lateral expansion ratio �� versus axial compression
ratio �� for randomly folded aluminum foil with size of 500
�500 mm2; circles—experimental data, doted line—data fitting
with equations �Eq. �3�� with �=0.22 �R2=0.981�, and solid line—
data fitting with Eq. �1� with �e=0.34 �R2=0.998�. �b� Lateral
strains −��= �P− P�0�� / P�0� versus axial strains �� = �R0−R� /R0

for all aluminum foils tested in this work; solid line—data fitting
with �e=1 /3 �R2=0.974�.
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of randomly folded sheets depends on the contraction ratio as

 /
0=K3.38

The findings of this work provide an insight into the re-
lation between the topology and mechanical properties of
randomly folded matter. We expect that these findings will
stimulate the theoretical studies and numerical simulations of

Poisson’s effect in the crumpled phase of randomly folded
thin sheets and polymerized membranes.
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